✨Hình học phi Euclid

Hình học phi Euclid

Hình học phi Euclid là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công trình nghiên cứu của Lobachevsky (được Lobachevsky gọi là hình học trừu tượng) và phát triển bởi Bolyai, Gauss, Riemann.

Hình học phi Euclid là cơ sở toán học cho lý thuyết tương đối của Albert Einstein, thông qua việc đề cập đến độ cong hình học của không gian nhiều chiều. giữa

Sơ thảo về các hình học phi Euclid
Cha đẻ của bộ môn này là Nikolai Ivanovich Lobachevsky

Hình học Euclid

Hình học Euclid dựa trên cơ sở công nhận, không cần chứng minh hệ thống các tiên đề sau:

  • Qua hai điểm phân biệt, luôn vẽ được một đường thẳng
  • Đường thẳng có thể kéo dài vô hạn
  • Với một tâm bất kì và một bán kính bất kỳ, luôn vẽ được một cung tròn
  • Mọi góc vuông đều bằng nhau
  • Nếu hai đường thẳng phân biệt tạo thành với đường thẳng thứ ba một cặp góc trong cùng phía nhỏ hơn 180° thì chúng sẽ cắt nhau về phía đó :Lưu ý, các tiên đề Euclid ngầm hiểu là áp dụng trong hình học phẳng.

Hình học Lobachevsky

Hình học Lobachevsky (còn gọi hình học hyperbol) do nhà toán học Nga Nikolai Ivanovich Lobachevsky khởi xướng, dựa trên cơ sở bác bỏ tiên đề về đường thẳng song song. Lobachevsky giả thiết rằng từ một điểm ngoài đường thẳng ta có thể vẽ được hơn một đường thẳng khác, nằm trên cùng mặt phẳng với đường thẳng gốc, mà không giao nhau với đường thẳng gốc (đường thẳng song song). Từ đó, ông lập luận tiếp rằng từ điểm đó, có thể xác định được vô số đường thẳng khác cũng song song với đường thẳng gốc, từ đó xây dựng nên một hệ thống lập luận hình học logic.

Để xem xét hình học Lobachevsky ứng dụng vào lý thuyết không-thời gian cong, cần thiết phải xem lại khái niệm đường thẳng nối hai điểm. Trong lý thuyết tương đối rộng, trong cơ học lượng tử và trong vật lý thiên văn, người ta mặc nhiên thừa nhận đó là đường đi của tia sáng-sóng điện từ giữa hai điểm đó.

Trong hình học Euclid, tổng các góc trong của một tam giác bằng 180°, nhưng trong hình học phi Euclid, tổng các góc đó không bằng 180°, và phụ thuộc vào kích thước của tam giác đó.

Ngoài ra, trong hình học phi Euclid, đa giác có số cạnh nhỏ nhất không phải là tam giác mà là nhị giác

Hình học elliptic

Tập tin:Hyperbolic triangle.png|Trong hình học Hyperbolic, tổng các góc trong một tam giác nhỏ hơn 180° Tập tin:Triangles (spherical geometry).jpg|Trên hình học mặt cầu, tổng các góc trong của một tam giác cầu lớn hơn 180°
👁️ 4 | 🔗 | 💖 | ✨ | 🌍 | ⌚
**Hình học phi Euclid** là bộ môn hình học dựa trên cơ sở phủ nhận ít nhất một trong số những tiên đề Euclid. Hình học phi Euclid được bắt đầu bằng những công trình
**Hình học elliptic** là một ví dụ về hình học trong đó tiên đề song song của Euclid là không đúng. Thay vào đó, như trong hình học cầu, không có đường thẳng song song
thumb|Hình vẽ minh họa cho phát biểu gốc của Euclid về tiên đề song song. Trong hình học, **định đề song song** (tiếng Anh: _parallel postulate_) hay **định đề thứ năm của Euclid** do là
thumb|Bức họa _[[Trường học Athena_ của Raffaello miêu tả các nhà toán học Hy Lạp (có thể là Euclid hoặc Archimedes) đang dùng compa để dựng hình.]] **Hình học Euclid** (còn gọi là **hình học
thumb|Bảng các yếu tố trong hình học, trích từ cuốn _[[Cyclopaedia_ năm 1728.]] **Hình học** (geometry) bắt nguồn từ ; _geo-_ "đất", _-metron_ "đo đạc", nghĩa là đo đạc đất đai, là ngành toán học
phải|Một tam giác nhúng trên mặt yên ngựa (mặt [[hyperbolic paraboloid), cũng như hai đường thẳng _song song_ trên nó.]] **Hình học vi phân** là một nhánh của toán học sử dụng các công cụ
nhỏ|300x300px| Trên một mặt cầu, tổng các góc của một tam giác không bằng 180 °. Một hình cầu không phải là không gian Euclide, nhưng cục bộ các định luật của hình học Euclide
**Hình học Riemann** là một nhánh của hình học vi phân nghiên cứu các đa tạp Riemann, đa tạp trơn với _metric Riemann_ hay với một tích trong (inner product) trên không gian tiếp tuyến
phải|khung| Các đường thẳng qua một điểm _P_ cho trước và tiệm cận với đường _R_ phải|nhỏ|250x250px| Một hình tam giác nằm trong một mặt phẳng hình yên ngựa (một [[paraboloid hyperbol), cùng với hai
nhỏ|upright=1.35|Áp dụng định lý Pythagoras để tính khoảng cách Euclid trong mặt phẳng Trong toán học, **khoảng cách Euclid** () giữa hai điểm trong không gian Euclid là độ dài của đoạn thẳng nối hai
**Định lý Pythagoras**
Tổng diện tích của hai hình vuông có cạnh là hai cạnh vuông của tam giác vuông (_a_ và _b_) bằng diện tích của hình vuông có cạnh là cạnh huyền (_c_). Trong
_Cuốn [[The Compendious Book on Calculation by Completion and Balancing_]] Từ _toán học_ có nghĩa là "khoa học, tri thức hoặc học tập". Ngày nay, thuật ngữ "toán học" chỉ một bộ phận cụ thể
Bài này nói về từ điển các chủ đề trong toán học. ## 0-9 * -0 * 0 * 6174 ## A * AES * ARCH * ARMA * Ada Lovelace * Adrien-Marie Legendre *
Toán học trong nghệ thuật: Bản khắc trên tấm đồng mang tên _[[Melencolia I_ (1514) của Albrecht Dürer. Những yếu tố liên quan đến toán học bao gồm com-pa đại diện cho hình học, hình
phải||Hình 1 – Một tam giác với các góc _α_ (hoặc _A_), _β_ (hoặc _B_), _γ_ (hoặc _C_) lần lượt đối diện với các cạnh _a_, _b_, _c_. Trong lượng giác, **Định lý cos** (hay
Nói chung, **toán học thuần túy** là toán học nghiên cứu các khái niệm hoàn toàn trừu tượng. Đây là một loại hoạt động toán học có thể nhận biết được từ thế kỷ 19
nhỏ|Bao lồi của tập hợp màu đỏ là [[tập lồi màu xanh và màu đỏ.]] Trong hình học, **bao lồi** của một hình là tập hợp lồi nhỏ nhất chứa hình đó. Bao lồi có
Mọi điểm trong không gian Euclid ba chiều biểu hiện trong hệ quy chiếu [[Hệ tọa độ Descartes|Descartes]] Khoảng 300 năm TCN, nhà toán học Hy Lạp cổ đại Euclid đã tiến hành nghiên cứu
**Triết học toán học** là nhánh của triết học nghiên cứu các giả định, nền tảng và ý nghĩa của toán học, và các mục đích để đưa ra quan điểm về bản chất và
nhỏ|phải|Minh họa [[hệ tọa độ Descartes 3 chiều thuận tay phải sử dụng để tham chiếu vị trí trong không gian.]] **Không gian** là phạm vi ba chiều không biên giới trong đó các vật
Hình chỏm cầu màu xanh và mặt cắt. Trong hình học không gian, **hình chỏm cầu**, **hình vòm cầu**, hay **hình đới cầu có một đáy** là một phần của hình cầu bị chia bởi
**Trừu tượng hóa** trong toán học là quá trình rút ra bản chất cơ bản của một khái niệm toán học, loại bỏ bất kỳ sự phụ thuộc nào vào các đối tượng trong thế
**Igor Rostislavovich Shafarevich** (; sinh ngày 3 tháng 6 năm 1923 – mất ngày 19 tháng 2 năm 2017) là nhà toán học Liên Xô và Nga có cống hiến cho hai nhánh lý thuyết
**Christian Felix Klein** (25 tháng 4 năm 1849 – 22 tháng 6 năm 1925) là nhà toán học người Đức, được biết đến với những nghiên cứu của ông trong lý thuyết nhóm, lý thuyết
**Toán học của thuyết tương đối rộng** là mô hình chứa đựng cấu trúc và kỹ thuật toán học được sử dụng để nghiên cứu và thiết lập lên thuyết tương đối rộng của Einstein.
**Nguyễn Cảnh Toàn** (28 tháng 9 năm 1926 – 8 tháng 2 năm 2017) là một Giáo sư Toán học Việt Nam, nguyên Hiệu trưởng trường Đại học Sư phạm Hà Nội, Đại học Sư
**Lịch sử của thuyết tương đối hẹp** bao gồm rất nhiều kết quả lý thuyết và thực nghiệm do nhiều nhà bác học khám phá như Albert Abraham Michelson, Hendrik Lorentz, Henri Poincaré và nhiều
thumb|right|Quang học nghiên cứu hiện tượng [[tán sắc của ánh sáng.]] **Quang học** là một ngành của vật lý học nghiên cứu các tính chất và hoạt động của ánh sáng, bao gồm tương tác
**Wilhelm Karl Joseph Killing** (sinh ngày 10 tháng 5 năm 1847 – mất ngày 11 tháng 2 năm 1923) là nhà toán học Đức có nhiều cống hiến quan trọng cho lý thuyết của các
**Ghiyāth al-Dīn Abū al-Fatḥ ʿUmar ibn Ibrāhīm Nīsābūrī** (ngày 18 tháng 5 năm 1048 – ngày 4 tháng 12 năm 1131), thông thường được biết đến với tên gọi **Omar Khayyám** (),, là một nhà
thumb|Hình mình họa cho chứng minh của Euclid về định lý Pythagoras. **Toán học Hy Lạp** là nền toán học được viết bằng tiếng Hy Lạp, phát triển từ thế kỷ 7 TCN đến thế
Số **pi** (ký hiệu: ****), còn gọi là **hằng số Archimedes**, là một hằng số toán học có giá trị bằng tỷ số giữa chu vi của một đường tròn với đường kính của đường
**William James Sidis** (; 1 tháng 4 năm 1898 – 17 tháng 7 năm 1944) là một thần đồng người được biết đến với khả năng toán học và ngôn ngữ đáng kinh ngạc. Sau
phải|nhỏ|260x260px|Một tiết dạy toán tại [[Trường Khoa học và Công nghệ Đại học Aalto]] Trong giáo dục đương đại, **giáo dục** **toán học** là thực hành dạy và học toán học, cùng với các nghiên
**János Bolyai** (1802-1860) là nhà toán học người Hungary. Ông là đối thủ của nhà toán học người Nga Nikolay Ivanovich Lobachevsky. Năm 1832, ông công bố công trình của mình về hình học phi
**Charles Lutwidge Dodgson** () (27 tháng 1 năm 1832 – 14 tháng 1 năm 1898), nổi tiếng với bút danh **Lewis Carroll** (), là một nhà văn, nhà toán học, nhà thần học, nhà logic
nhỏ|265x265px|Bức tượng _[[Người suy tư_, Auguste Rodin|thế=]] Thuật ngữ "**Triết học phương Tây**" muốn đề cập đến các tư tưởng và những tác phẩm triết học của thế giới phương Tây. Về mặt lịch sử,
nhỏ|phải|Đồ thị vẽ a và b là hai đường thẳng song song Trong hình học, sự **song song** là một đặc tính của các đường thẳng, mặt phẳng, hoặc tổng quát hơn là các không
**Georg Friedrich Bernhard Riemann** (phát âm như "ri manh" hay IPA ['ri:man]; 17 tháng 9 năm 1826 – 20 tháng 7 năm 1866) là một nhà toán học người Đức, người đã có nhiều đóng
nhỏ|Các bảng số học dành cho trẻ em, Lausanne, 1835 **Số học** là phân nhánh toán học lâu đời nhất và sơ cấp nhất, được hầu hết mọi người thường xuyên sử dụng từ những
Trong toán học, thuật ngữ **tối ưu hóa** chỉ tới việc nghiên cứu các bài toán có dạng :_Cho trước:_ một hàm _f_: _A_ \to **R** từ tập hợp _A_ tới tập số thực :_Tìm:_
**Quang học** là một lĩnh vực vật lý học, chuyên nghiên cứu về ánh sáng, cụ thể la nguồn gốc và cách truyền ánh sáng, cách thức nó biến đổi cùng vời những hiện tượng
**Vật chất** cùng với không gian và thời gian là những vấn đề cơ bản mà tôn giáo, triết học và vật lý học nghiên cứu. Vật lý học và các ngành khoa học tự
Trong hình học và tô pô, thông thường một đa tạp được xác định là một không gian Hausdorff. Trong tô pô đại cương, tiên đề này được nới lỏng, và người ta nghiên cứu
**Mikhail Vasilyevich Ostrogradsky** (, , 24 tháng 9 năm 1801 – 1 tháng 1, 1862) là một nhà toán học, cơ học, vật lý học người Nga. Ostrogradsky được cho là truyền nhân của Leonhard
**Giovanni Girolamo Saccheri** (1667-1733) là nhà toán học, linh mục, nhà triết học người Ý. Có thể ông đã có những ý tưởng đầu tiên về hình học phi Euclid. Mặc dù vậy, như nhiều
**Eugenio Beltrami** (1835-1900) là nhà toán học người Ý. Năm 1868, Beltrami đã chứng minh được rằng hình học phi Euclid kiểu của Nikolai Ivanovich Lobachevsky có độ cong là hằng số âm.
Trên [[hình cầu, tổng các góc trong của một tam giác cầu không bằng 180° (xem hình học cầu). Mặt cầu không phải là một mặt Euclid, nhưng trong một vùng lân cận đủ nhỏ
**Logic toán** là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm hai phần: nghiên
thumb|right|Các thao tác bước xoay [[Rubik|khối lập phương Rubik tạo thành nhóm khối lập phương Rubik.]] Trong toán học, một **nhóm** (group) là một tập hợp các phần tử được trang bị một phép toán